





Silicon Photodiode Array with Scintillation Crystal

PDB-C216-C

Precision – Control – Results

DESCRIPTION

The PDB-C216-C is a common cathode monolithic silicon PIN photodiode 16-element array. Designed to be stacked end-to-end to form a line of pixels. Supplied with X-Ray Cs(Ti) scintillation crystals and packaged in a PCB with a terminal strip package

FEATURES

- Stackable
- Blue enhanced
- Low cost

RELIABILITY

This API high-reliability detector is in principle able to meet military test requirements (Mil-STD-750, Mil-STD-883) after proper screening and group test.

Contact API for recommendations on specific test conditions and procedures.

APPLICATIONS

- Luggage X-Ray
- X-Ray scanner
- X-Ray inspection

ABSOLUTE MAXIMUM RATINGS

 T_a = 23°C non condensing 1/16 inch from case for 3 seconds max

SYMBOL	MIN	MAX	UNITS
Reverse Voltage	-	50	V
Operating Temperature	-20	+100	°C
Storage Temperature	-40	+75	°C
Soldering Temperature	-	+260	°C

Information in this technical datasheet is believed to be correct and reliable. However, no responsibility is assumed for possible inaccuracies or omission. Specifications are subject to change without notice.

REV 05-18-15

© 2015 Advanced Photonix, Inc. All rights reserved.

Germany and Other Countries
Laser Components Germany GmbH
Tel: +49 8142 2864-0
Fax: +49 8142 2864-11
info@lasercomponents.com

www.lasercomponents.com

Silicon Photodiode Array with Scintillation Crystal

PDB-C216-C

Precision – Control – Results

OPTO-ELECTRICAL PARAMETERS

T_a = 23°C unless noted otherwise

TEST CONDITIONS	MIN	TYP	MAX	UNITS
I _{bias} = 10 μA	15	30	-	V
V _{bias} = 10 mV	100	200	-	MΩ
V _{bias} = 5V	-	5	50	nA
$V_{\text{bias}} = 0V$; $f = 0 \text{ MHz}$	-	40	60	pF
V _{bias} = 10V	-	15	-	ns
V _{bias} = 10V;@ Peak	-	2	-	10 ⁻¹⁴ W/Hz ^{0.5}
V _{bias} = 10V	-	-8	-	%/C
	$\begin{array}{c} I_{bias} = 10 \; \mu A \\ V_{bias} = 10 \; mV \\ V_{bias} = 5V \\ V_{bias} = 0V; \; f = 0 \; MHz \\ V_{bias} = 10V \\ V_{bias} = 10V; \; Q \; Peak \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Information in this technical datasheet is believed to be correct and reliable. However, no responsibility is assumed for possible inaccuracies or omission. Specifications are subject to change without notice.

REV 05-18-15 © 2015 Advanced Photonix, Inc. All rights reserved.

2