

Multiple Order Waveplates

Multiple order plates are the most common waveplates.

Their thickness d can be calculated as follows:

 $d = n\lambda + q$

 $n\lambda$: a whole multiple of the wavelength

q: thickness with which the desired retardation can be achieved

a corresponds to the so-called "true zero retardation plate", which, at a retardation of $\lambda/2$, has a thickness of 45 µm at 800 nm.

The advantage of multiple order plates is that they are easier to manufacture and more user-friendly due to their thickness.

The multiple phase shifting causes a reduced spectral bandwidth.

This makes itself evident in the temperature sensitivity but is sufficient for standard applications.

Nomenclature

QWPM	1064	-05	-2	AR/AR
Product Code (Multiple Order)	Wavelength in nm	Diameter in inches x 10	Retardation 2: λ/2 4: λ/4	Coating Specification

Specifications

Spectral bandwidth	Typ. $\lambda \pm 0.5 \%$		
Typical range of thickness 0.25 mm to 1.5 mm			
Wavefront error	$\lambda/10$ at 632.8 nm (transmission)		
Retardation tolerance	λ/100 to λ/600		
Surface quality	5/4 x 0.025 for 1.0" substrates according to ISO 10110 10-5 according to MIL-O-1380A		
Parallelism	Wedge < 0.5 arcsec		
Damage threshold	LDT > 10 J/cm² (10 ns; 1064 nm)		
Clear aperture	85 % of diameter		
Wavelength	For single wavelength in the range of 248 nm – 2200 nm		
Dimensions [mm]	12.7; 15.0; 20.0; 25.4; 30.0; 38.1; 50.8		

01/24 / V03 / HB·IF / diverse-laser-optics/waveplates/multiple-order-waveplates

www.lasercomponents.com

Tel: +33 1 39 59 52 25 Fax: +33 1 39 59 53 50 info@lasercomponents.fr www.lasercomponents.fr

United Kingdom

Laser Components (UK) Ltd. Tel: +44 1245 491 499 Fax: +44 1245 491 801 info@lasercomponents.co.uk www.lasercomponents.co.uk

Nordic Countries

Laser Components Nordic AB Tel: +46 31 703 71 73 Fax: +46 31 703 71 01 info@lasercomponents.se www.lasercomponents.se

Laser Components USA, Inc. Tel: +1 603 821 - 7040 Fax: +1 603 821 - 7041 info@laser-components.com www.laser-components.com