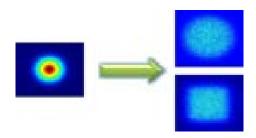


Low Cost DOEs Fabrication in Plastic

HoloOr produces since 2014 plastic DOEs. Low to medium power applications do not necessarily require a glassy material for the DOE. HoloOr offers low cost, mass production of diffractive elements using an injection molding technology. The main plastic types are: Polycarbonate PMMA, Zeonex and Zoner.

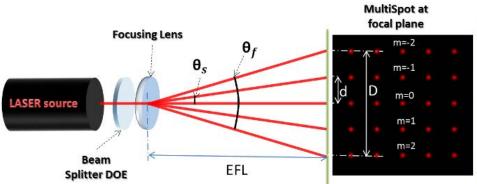
For Custom Specific DOEs

If you are interested in custom specific plastic DOEs for measuring or vision application, we need from you following data:


- Description on application
- Wavelength
- Beam definition (diameter, input mode, divergency)
- DOE dimension if some specific values are needed
- Working distance
- Requested output shape at working distance
- Special needs (high efficiency, high homogeneity, AR coating)
- Quantity for samples and serial production

Standard Plastic DOEs

The standard list is a permanently growing list of DOEs available in plastic for mass production, please ask us if there are any new parts available. All standard DOEs are without antireflective coating.



Homogenizer

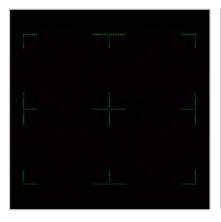
Туре	Wavelength [nm]	Dimension [mm]	Material	Diffusion Angle [°]	Output Shape	Efficiency [%]
RD-217-850-N-A	850	10 × 10 × 0.6	Polycarbonate	25.56	Round	ca. 67.7
HM-293-Q-N-A	532	10 x 10 x 0.6	Polycarbonate	5 x 5	Square	ca. 67

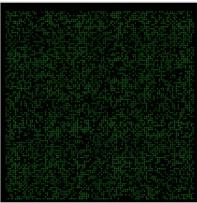
Multispot DOE

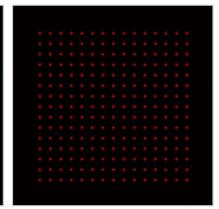
EFL	Effective focal length
m	Orders (spot) of the MultiSpot
θ_s	Separation angle between 2 focal spots
d	Distance between 2 focal spots
θ_f	Full angle
D	Length of the spots

Туре	Wavelength [nm]	Dimension [mm]	Material	Separation Angle [°]	Number of Spots	Efficiency [%]
MS-447-Q-N-X	532	6 x 8 x 0.6	Polycarbonate	0.49 × 0.49	164 x 164 target	ca. 64.3
MS-466-Q-N-X	532	6 x 8 x 0.6	Polycarbonate	0.49 × 0.49	92 x 92 target	ca. 63.4
MS-467-Q-N-X	532	10 x 10 x 0.6	Polycarbonate	0.17 × 0.17	181 x 181 random	ca. 67.0
MS-468-850-N-X	850	10 x 10 x 0.6	Polycarbonate	0.27 × 0.27	181 x 181	ca. 69.5
MS-469-850-N-X	850	10 x 10 x 0.6	Polycarbonate	0.32 × 0.32	101 x 101 random	ca. 66.8
MS-470-850-N-A	850	20 x 20 x 0.6	Polycarbonate	0.26 × 0.26	128 x 128	ca. 69.5

Target DOEs


Multispot DOEs with the remark "target" is an element that produces a number of spots building a typical target, refer also to below image.


Random DOEs


Multispot DOEs with the remark "random" have a random pattern of spot, with 50% of the dot matrix are potential spots and will be lit, and this will be determined by a randomizing algorithm.

Standard Multispot DOEs

Multispot DOEs with out any additional remark, show a homogenous distribution of the spots, as shown in below image:

