1

OT-301SL

OEM Position Sensing Amplifier

For Single Axis Position Sensing Detectors

- Sum Output
- Wide Dynamic Range Three Decades 10³V/A, 10⁴V/A, 10⁵V/A
- DC to 15kHz
- Calibration Adjust
- · Zero Offset Adjust
- Automatic Detector Bias
- · Position Independent of Beam Intensity

OT-301SL

The OT-301SL comes standard with the following items:

- 1. OT-301SL Amplifier
- 2. Input DB9 cable
- 3. Output ribbon cable
- 4. Power Supply
- 5. User's Manual

OT-301SL General Description

The OT-301SL printed circuit board amplifier is designed for direct integration into OEM instrumentation. Optimized for single-axis Position Sensing Detectors (PSDs) with selectable bias voltages and three gain ranges, the OT-301SL's circuit elements add, subtract and divide signals with exceptional accuracy.

Precision op amps and resistor networks perform addition and subtraction operations; optimized analog dividers provide the final ratio. The analog divider ensures the utmost in linearity over a very wide signal range.

The final stages provide $\pm 10\%$ reading adjustment of the position output and serve as a high performance output buffer for driving long cables. The sum signal equals the total detector signal and is proportional to the incident beam power.

The OT-301SL includes a DC-DC converter that can be removed and replaced with an external power source for reducing cost in high-volume OEM applications.

Beam position is calculated from the ratios of signals generated by the PSD's two anode connections (designated Y1 and Y2). Dual transimpedance amplifiers on the OT-301SL accurately measure the PSD's anode signal currents.

The exact relationship between PSD signal and beam position is as follows:

$$Y = \left(\frac{Y1 - Y2}{Y1 + Y2}\right) \frac{L}{2}$$

where Y is the coordinate of the centroid of the beam spot on the PSD surface (measured from the detector center); and L is the size of the detector's sensitive surface in mm (e.g.: $2.5, 5.0, 10, 20, 30 \ mm$).

Specifications

Detector Type Single Axis Position Sensing Detectors

Anode Outputs (Common Cathode) Cathode Outputs (Common Anode) Bi-Cell (Common Anode or Cathode)

Input Sensitivity 10⁻³ A/V, 10⁻⁴ A/V, 10⁻⁵ A/V

Y Output Signal $0V \text{ to } \pm 10V$ Sum Output Signal 10V max Calibration Adjust $\pm 10\%$ of reading

Y Zero (offset) $\pm 1.0 V$

Bias Voltage $0V, \pm 5V, \text{ or } \pm 12V$

 $\begin{array}{ll} \mbox{Linearity} & \pm \, 0.1\% \\ \mbox{Channel to Channel Tracking} & 1\% \end{array}$

Power AC Adapter \pm 12V DC @ 500mASize 3.5×5.0 inchesInput ConnectorReceptacle DB9

Output/Power Connector Dual Row 10 PIN Header

2