

Datenblatt

OTU-5000 Optical Test Unit

Sicherung eines hervorragenden Service, schnellerer Umsätze und sinkender Kosten durch die Automatisierung der Überwachung optischer Netzwerke mit der kompaktesten, rackbasierten optischen Online-Testeinheit auf dem Markt!

Die OTU-5000 Optical Test Unit kombiniert ein optisches Zeitbereichsreflektometer (OTDR) mit optischen Schaltern, um mehrere Glasfasern im Netzwerk kontinuierlich zu überwachen. Dabei belegt eine OTU-5000, die 72 Glasfasern mit einer Länge von 100 und mehr Kilometern überwachen kann, im Rack nur eine Höheneinheit (HE).

Die OTU-5000 bietet in einer kompakten Lösung alle Funktionen und Leistungsparameter eines vollwertigen OTDRs und eines optischen Schalters. Sie testet bis zu 16 Glasfasern mit einer Länge von 100 und mehr Kilometern und nimmt dabei nur ein Drittel einer Rack-Höheneinheit ein. Die verbleibenden zwei Drittel des Platzes können für kompakte optische Schalter genutzt werden, die die Überwachungskapazität auf 72 Glasfasern vergrößern. Die OTU-5000 informiert den Anwender sofort über Leistungseinbußen auf den Glasfasern und meldet die geographischen Koordinaten der Fehlerstelle, sodass das Reparatur-Team gleich an den richtigen Ort geschickt werden kann.

Die OTU-5000 unterstützt die Software-Anwendungen ONMSi und SmartOTU von VIAVI. SmartOTU erlaubt dem Anwender, die Überwachung der optischen Strecken in kürzester Zeit mit bedienerfreundlicher Software und ohne zusätzliche Schulung einzurichten. ONMSi versetzt den Anwender in die Lage, ein leistungsstarkes Überwachungssystem für das gesamte optische Netzwerk bereitzustellen, das mehrere OTU gleichzeitig verwalten kann.

Leistungsmerkmale

- Optischer Schalter bis auf 1080 Anschlüsse skalierbar
- Zugriff über Web-Browser
- E-Mail-Benachrichtigungen
- Kompakte Abmessungen: 72 Ports in 1 HE
- Doppelte Stromversorgung
- Solid-State Disk (SSD)
- Geringer Stromverbrauch
- LAN-basierte Firmware-Downloads

Die wichtigsten Vorteile

- Sicherung einwandfreier Dienste bei Installation, Aktivierung und mehr
- Erkennung von Leistungsstörungen auf der Glasfaser noch vor einer Beeinträchtigung des Dienstes und damit proaktive Vermeidung von Dienstunterbrechungen
- Verkürzung der Reparaturzeiten (MTTR) durch Lokalisierung der Fehlerstelle auf der Glasfaser in Minuten anstatt in Stunden
- Senkung der Betriebskosten durch Vermeidung unnötiger Servicefahrten
- Schutz der Investition durch Überwachung des Langzeitverhaltens der installierten Fasern
- Verringerung der Installationskosten durch schnellere Testausführung und umfassende Unterstützung der Techniker
- Schutz der Integrität und Sicherheit des Netzwerks durch Erkennung und Lokalisierung von unberechtigten Zugriffen

Anwendungen

- Glasfaserüberwachung für Service-Provider, Rechenzentren, Versorgungsunternehmen und Dark-Fiber-Anbieter
- Aufbau, Einrichtung und Wartung von FTTx-Netzen
- Erkennung von Abhörversuchen (Anzapfungen) bei kritischen Glasfaser-Anwendungen
- Überwachung der Infrastruktur (Einstiegsschächte, Schränke ...)

Vorläufige technische Daten (typ. bei 25 °C)

Grundgerät		
Höhe	1 HE	
Breite	19", 21" (ETSI) oder 23"	
Tiefe	260 mm (ETSI), 280 mm (19" oder 23")	
Betriebstemperatur	-20 bis 50 °C	
Lagertemperatur	-20 bis 60 °C	
Relative Luftfeuchte	95 %, nicht kondensierend	
EMI/ESD	CE-konform	
Schnittstellen	1 RJ45-Port für Ethernet 10/100/1000BaseT	
Speicher	Solid-State Disk (SSD)	
Stromversorgung/Leistung	-36 bis -59 V / 10 W	
Optischer Schalter		
Anzahl der Ports	2, 4, 8, 12, 16, 24, 36, nx36	
	Mehr als 1000 durch Kaskadierung von nx36-Ports	
Einfügungsverlust (ohne Steckverbinder)		
Bis zu 16 Ports	1,2 dB (1500–1660 nm)	
24 und 36 Ports	1,0 dB	
Rückreflexion	-55 dB	
Reproduzierbarkeit	±0,02 dB	
Wellenlängenbereich	1260–1660 nm	
Lebensdauer	100 Millionen Schaltzyklen	
Bis zu 72 Ports	In 1 HE enthalten	
Mehr Ports	Extern 1 HE mit bis zu 108 Ports	
Grundgerät		
Höhe	1 HE	
Breite	19", 21" (ETSI) oder 23"	
Tiefe	260 mm (ETSI), 280 mm (19" oder 23")	

OTU-5000 Optical Test Unit

2

OTDR (allgemein)			
Lasersicherheit	Klasse 1	Klasse 1	
Anzahl der Messpunkte	max. 512.000		
Messwertauflösung	ab 4 cm	ab 4 cm	
Entfernungsbereich	bis 260 km	bis 260 km	
Entfernungsgenauigkeit	± 1 m ± Messwertauflösung ± E	± 1 m ± Messwertauflösung ± Entfernung x 1,10 ⁻⁵	
	Kurzstrecken-OTDR	Mittelstrecken-OTDR	
Wellenlänge¹ (nm)	1625 nm	1625 nm	
Wellenlängen-Genauigkeit¹ (nm)	±3	±3	
Dynamikbereich² (dB)	33	40	
Pulsbreite	5 ns bis 20 μs	5 ns bis 20 μs	
Ereignistotzone³ (m)	1,35	0,8	
Dämpfungstotzone⁴ (m)	3	3	

- 1. Laser bei 25 °C und gemessen bei 10 μ s.
- 2. Die Einwegdifferenz zwischen dem extrapolierten Rückstreupegel am Faseranfang und dem RMS-Rauschpegel nach dreiminütiger Mittelwertbildung bei größter Pulsbreite.
- 3. Gemessen bei ± 1,5 dB hinter dem Peak eines nicht gesättigten reflektiven Ereignisses bei kleinster Pulsbreite.
- 4. Gemessen bei ± 0,5 dB ab der linearen Regression bei einer Reflexion vom Typ FC/PC und bei der kürzesten Pulsbreite.

© 2018 VIAVI Solutions Inc. Die in diesem Dokument enthaltenen Produktspezifikationen und Produktbeschreibungen können ohne vorherige Ankündigung geändert werden. otu5000-ds-fop-nse-de 30186403 900 0218