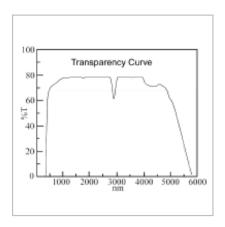


Lithium Niobate Crystal Series (LiNbO₃, MgO:LiNbO₃)

Lithium Niobat Crystal (LiNbO₃)

LiNbO $_3$ crystal is widely used as frequency doublers for wavelength >1 µm and optical parametric oscillators (OPOs) pumped at 1064 nm as well as quasi-phase-matched (QPM) devices. Due to its large Electro-Optic (E-O) and Acousto-Optic (A-O) coefficients, LiNbO $_3$ crystal is the most commonly used material for Pockel Cells, Q-switches and phase modulators, waveguide substrate, and Surface Acoustic Wave (SAW) wafers, etc.

We provide high quality and large size LiNbO $_3$ crystals for laser frequency doublers, OPOs and quasi-phase-matched doublers, as well as waveguide substrate and SAW wafers. High quality LiNbO $_3$ components with aperture of $(2-15) \times (2-15)$ mm 2 and length up to 50 mm for frequency doublers and optical parametric oscillators (OPOs), 50x50x1 mm 3 or Dia. 3" x 1 mm LiNbO $_3$ substrate for waveguide optics, and Dia. 3" SAW wafers are available with high volume and at low price.


Basic Properties

Crystal structure	trigonal, space group R3c
Cell parameters	a = 0.515, c = 13.863, Z = 6
Melting point	1255 ± 5 °C
Curie point	1140 ± 5 °C
Mohs hardness	5
Density	4.64 g/cm ³
Absorption coefficient	~0.1%/cm @ 1064 nm
Solubility	insoluble in H ₂ O
Relative dielectric constant	$\epsilon^{T}_{11}/\epsilon_{0}$: 85 $\epsilon^{T}_{33}/\epsilon_{0}$: 29.5
Thermal expansion coefficients (@ 25 °C)	a, 2.0 x 10°/K c, 2.2 x 10°/K
Thermal conductivity	38 W/m/K @ 25 °C

1

Linear Optical Properties

Transparency range	420 – 5200 nm
Refractive indices	n _e = 2.146, n _o = 2.220 @ 1300 nm n _e = 2.156, n _o = 2.232 @ 1064 nm n _e = 2.203, n _o = 2.286 @ 632.8 nm
Optical homogeneity:	~5 x 10 ⁻⁵ /cm
Sellmeier equations (λ in μm):	$\begin{array}{l} n^{2}_{o}(\lambda) = 4.9048 + 0.11768/(\lambda^{2} - 0.04750) - 0.027169 \times \lambda^{2} \\ n^{2}_{e}(\lambda) = 4.5820 + 0.099169/(\lambda^{2} - 0.04443) - 0.021950 \times \lambda^{2} \end{array}$

Nonlinear Optical Properties

NLO coefficients	$d_{33} = 34.4 \text{ pm/V}$ $d_{31} = d_{15} = 5.95 \text{ pm/V}$ $d_{22} = 3.07 \text{ pm/V}$	
Efficiency NLO coefficients	$\begin{aligned} &d_{\text{eff}} = 5.7 \text{ pm/V or} \sim 14.6 \text{ x } d_{36} \text{ (KDP) for frequency doubling } 1300 \text{ nm}; \\ &d_{\text{eff}} = 5.3 \text{ pm/V or} \sim 13.6 \text{ x } d_{36} \text{ (KDP) for OPO pumped at } 1064 \text{ nm}; \\ &d_{\text{eff}} = 17.6 \text{ pm/V or} \sim 45 \text{ x } d_{36} \text{ (KDP) for quasi-phase-matched structure}. \end{aligned}$	
Electro-optic coefficients	$ \gamma^{T33} = 32 \text{ pm/V}, $ $ \gamma^{T31} = 10 \text{ pm/V}, $ $ \gamma^{T22} = 6.8 \text{ pm/V}, $	$ \chi^{S33} = 31 \text{ pm/V} $ $ \chi^{S31} = 8.6 \text{ pm/V}, $ $ \chi^{S22} = 3.4 \text{ pm/V}, $
Half-wave voltage, DC Electrical field z, light ⊥ z: Electrical field x or y, light z:	3.03 KV 4.02 KV	
Damage threshold	100 MW/cm² (10 ns, 1064 nm)	

Optics

Standard Specifications of Laser Grade LiNbO₃ Crystals

Transmitted wavefront distortion	better than $\lambda/4$ @ 633nm	
Dimension tolerance	$(W \pm 0.1 \text{ mm}) \times (H \pm 0.1 \text{ mm}) \times (L \pm 0.2 \text{ mm})$	
Clear aperture	over 90% central diameter	
Flatness	λ/8 @ 633nm	
Surface quality	20 / 10 scratch/dig	
Parallelism	better than 20 arc sec	
Perpendicularity	5 arc min	
Angle tolerance	$\Delta\theta$ < 0.5°, $\Delta\phi$ < 0.5°	
AR-coating	dual wave band AR coating at 1064/532 nm on both surfaces, with R<0.2% at 1064 nm and R<0.5% at 0.532 nm per surface 0.5% at 0.532 nm per surface	

Other custom specs. or coatings for LiNbO₃ crystals are also available upon request.

Magnesium Oxide Doped Lithium Niobate Crystals (MgO:LiNbO₃)

Compared with LiNbO3 crystal, MgO:LiNbO3 crystal exhibits its particular advantages for NCPM frequency doubling (SHG) of Nd:Lasers, mixing (SFG) and optical parametric oscillators (OPOs). The SHG efficiencies of over 65% for pulsed Nd:YAG lasers and 45% for cw Nd:YAG lasers have been achieved in MgO:LiNbO3 crystals, respectively. MgO:LiNbO₃ is also a good crystal for optical parametric oscillators (OPOs) and amplifiers (OPAs), quasi-phase-matched doublers and integrated waveguide. MgO:LiNbO₃ has similar effective nonlinear coefficients to pure LiNbO₃. Its Sellmeier equations (for MgO dopant 7 mol%) are:

$$\begin{split} n^2_{\circ} \left(\lambda \right) &= 4.8762 + 0.11554 / (\lambda^2 - 0.04674) - 0.033119 \times \lambda^2 \\ n^2_{\circ} \left(\lambda \right) &= 4.5469 + 0.094779 / (\lambda^2 - 0.04439) - 0.026721 \times \lambda^2 \end{split} \tag{λ in μm}$$

We provide high quality MgO: LiNbO₃ crystals for various nonlinear optics (NLO) and E-O applications. The typical size of MgO:LiNbO3 crystals is (3 - 10) x (3 - 10) x (10 - 30) mm³ for OPOs & OPAs and frequency doubling & mixing, and 20x20x1 mm³ for waveguide substrates. Other specs. and AR-coatings for MgO:LiNbO₃ are available upon request.

United Kingdom Laser Components (UK) Ltd. Tel: +44 1245 491 499 Fax: +44 1245 491 801 info@lasercomponents.co.uk www.lasercomponents.co.uk