

LASER-ALIGNMENT-PAPER LDT-LP

INDUSTRY STANDARD LASER ALIGNMENT THERMAL-SENSITIVE PAPER

- / Simple
- / Quick
- / Affordable laser beam alignment

LDT-LP DOCUMENTS

- / Beam shape
- / Mode
- / Intensity
- / Divergence
- / Energy distribution

SPECIFICATIONS

Pulse width range	1 ns to 30 ms
Power level range	5 mJ/cm² to 20 J/cm²
Min. beam diameter [mm]	6.5
Sheets per box	50 pieces
Sheet size [mm]	127 x 57

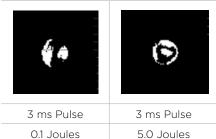
Caution:

Always wear laser protective eyewear

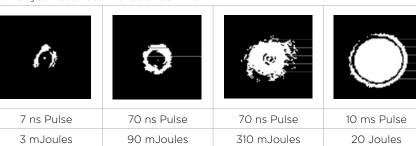
LASER-ALIGNMENT-PAPER LDT-LP

HOW TO HANDLE THE LDT-LP

- / LDT-LP is sensitive over a broad spectrum from ultraviolet to infrared, it is used to align external accessories to the laser beam axis, such as beam expanders, lenses, apertures, attenuators, and power measuring equipment.
- / LDT-LP is simple to use. Hold or fasten it in the beam path at the point where the beam imprint is to be recorded. Pulse the laser and a permanent visual record is produced, corresponding to the energy distribution within the laser beam. If the laser being used in continuous wave (CW), you can create a short pulse by Q-switch, mechanical chopper, or by physically turning the laser on and off rapidly.
- / For laser with a beam diameter of less than 6.5 mm, please use a diverging lens to enlarge the beam diameter and to achieve a better resolution with the LDT-LP.


 Position a positive lens in the beam path and take a picture with the LDT-LP at a distance of >2.5 times the focal length of the lens.
- / Please remove fiber optic systems before you take a picture with LDT-LP. In a fiber a mix of modes can occur and you will receive a homogenous image which does not allow conclusions about the irregularities in the beam path.
- / Increase or decrease the power of your laser until details of the laser beam are visible on the LDT-LP. Not all lasers have enough power to leave an image on the paper. As a guide: you will get a good image with a pulsed laser, femto to 50 msec., with at least 10 mJ output. If necessary please fire several pulses on the paper.

THE IMPRINT ON LDT-LP PAPER PROVIDES INFORMATION ABOUT


- / Mirror alignment accuracy
- / Energy distribution, mode quality and edge definition
- / Vignetting
- / Secondary emissions due to uncoated or mis-placed optics
- / Divergence
- / Optical damage in the beam path
- / Save LDT-LP burns for historical evaluation and comparison of alignment and beam quality. OEMs and field service personnel commonly use previous burn patterns for quick performance checks.

SPECIFICATIONS

What your laser beam should look like

