

Industrial Ethernet Transceiver in OptoLock® FB1M2KPR

DATA SHEET

650 nm Fiber Optic Transceiver for Industrial Ethernet with Optolock® Termination LVPECL I/O

FEATURES

- Simple low-cost termination solution for 2.2 mm jacketed POF cables without a plug
- Compatible with IEEE 802.3u Fast Ethernet over fiber 100Base-FX data communications standard
- Compatible with Ethernet PHYs supporting 100Base-FX
- Resonant Cavity LED (RCLED) at red 650 nm with small emission aperture suitable for POF
- RCLED reliability tested to over 400,000 hours lifetime
- Integrated CMOS driver IC for RCLED
- High sensitivity CMOS receiver IC and PIN diode for one-step light to digital conversion
- Integrated optics to efficiently focus and direct light
- -40° to +85°C operating range
- RoHS compliant

APPLICATIONS

	Table 1 APPLICATIONS
Application	Industrial Networking
Standard	IEEE 802.3 (100Base-FX)
Distance	50 meters Step Index POF ^[1]
Speed	100 Mbps

Note:

1. Depending on the installation conditions.

DESCRIPTION

Firecomms Industrial OptoLock® transceiver has a small form factor housing which combines a pair of Firecomms fiber optic components to provide instant termination for bare Plastic Optical Fiber (POF). As this POF port significantly simplifies the optical connection, it reduces maintenance time for industrial equipment.

This version of OptoLock carries a pair of Fast Ethernet Fiber Optic Transceivers (FOTs) designed to provide

Tel: +44 1245 491 499

Fax: +44 1245 491 801

Ethernet data links over POF in industrial environments. The FOTs are compatible with LVPECL which is the standard bus for a Fast Ethernet physical layer interface IC supporting the IEEE 100Base-FX standard. The interface circuit is simple AC coupling to the PHY's data pins. Signal detect on the RX provides a link on/off diagnostic for the PHY and can be used for power saving.

FB1M2KPR Revision A

Firecomms assumes no responsibility for inaccuracies or omissions in the information contained in this document. Specifications are subject to change without notice. No patent rights are granted to any of the circuits described herein.

TERMINATION STEPS

To terminate the POF cable into OptoLock, the end of the cable is cut cleanly, and the two strands are separated. One strand is inserted into each of two holes in the termination housing, which is then pressed closed to hold the POF in place. These steps are shown here.

FIGURE 1 Slice the POF cable.

FIGURE 3 Split the duplex POF.

FIGURE 4 Identify the POF core that is lit.

Present the lit core to the dark OptoLock side.

FIGURE 6 Insert both strands into OptoLock.

FIGURE 7 Push home to lock the clamp.

Tel: +44 1245 491 499

Fax: +44 1245 491 801

If the link is fully connected the indicator LED will flash showing activity on the Ethernet link.

FB1M2KPR Revision A

Firecomms assumes no responsibility for inaccuracies or omissions in the information contained in this document. Specifications are subject to change without notice. No patent rights are granted to any of the circuits described herein.

DATA SHEET 3 FB1M2KPR

SPECIFICATIONS

		Table 2		
ABSOLUTE MAXIMUM RATINGS				
These are the absolute maximum ratings at or beyond which the FOT can be expected to be damaged.				
Parameter	Symbol	Minimum	Maximum	Unit
Storage Temperature	T_{stg}	-40	+85	°C
Operating Temperature ^[1]	T _{op}	-40	+85	°C
Soldering Temperature [1]	T_{sld}		+260 ^[1]	°C
Supply Voltage	V_R	-0.5	4.5	V
Receiver Optical Overload	P _{OL}		0	dBm
Storage Compliance	MSL		2a	J-STD-020D

Notes: 1. 260°C for 10 sec, 1 time only, at least 2.2 mm away from lead root.

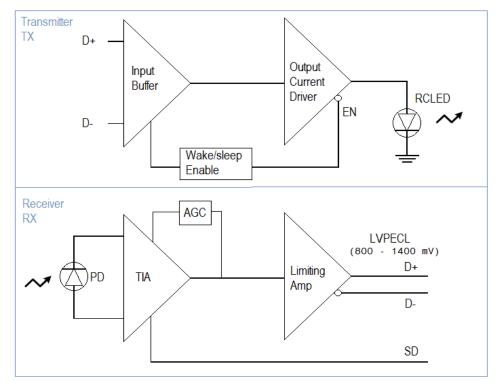


FIGURE 9 Electronic block diagrams of the TX and RX fiber optic transceivers

FB1M2KPR Revision A
Firecomms assumes no responsibility for inaccuracies or omissions in the information contained in this document.
Specifications are subject to change without notice. No patent rights are granted to any of the circuits described herein

DATA SHEET 4 FB1M2KPR

SPECIFICATIONS (continued)

Table 3 TRANSMITTER ELECTRICAL AND OPTICAL CHARACTERISTICS

Test Conditions:

- Test data was validated over the full temperature range of -40°C to +85°C, and over the supply range of 3V to 3.6V.
 Test data represents operation at the maximum data rate of 125 Mbps using a PRBS7 test pattern (8B/10B encoding) unless otherwise stated.
- 3. Optical power is measured when coupled into 0.5 m of a 1 mm diameter 0.5 NA plastic fiber.

Parameter	Symbol	Minimum	Typical	Maximum	Unit
DC Supply Voltage	Vcc	3.0	3.3	3.6	V
Operating Current Consumption	Icc	30	37	52	mA
Data Rate		10		125	Mbps
Data Input Capacitance	C _{IN}			5	pF
Data Input Resistance (Single-Ended)	R _{IN}		5		kΩ
Input Common-Mode Range	$V_{IN-BIAS}$	GND+0.8		V _{CC} -0.8	V
Input Voltage Swing	V _{IN-SWING}	100		1200	mV
Minimum Differential Voltage Swing to Ensure Wake-Up	Wake-up Input	50			mV
Wake-Up Time Delay			5	80	μs
Optical Power OFF Delay		0.02		20	μs
Peak Wavelength	λ_{peak}	640	660	670	nm
Spectral Bandwidth (FWHM)	Δλ	18	24	27	nm
Average Optical Power [3]	Р	-10	-5.5	-1.5	dBm
Optical Rise Time (20%-80%)	t _R	0.5	1.3	3.1	ns
Optical Fall Time (80%-20%)	t _F	0.4	0.5	0.75	ns
Optical Modulation Amplitude (OMA)	OMA	160	590	1250	μW
Open Eye Width	T _{eye}	6.5	7.4	7.9	ns

FB1M2KPR Revision A
Firecomms assumes no responsibility for inaccuracies or omissions in the information contained in this document.
Specifications are subject to change without notice. No patent rights are granted to any of the circuits described herein.

Tel: +44 1245 491 499

SPECIFICATIONS (continued)

Table 4 RECEIVER CHARACTERISTICS

Test Conditions:

- Test data was validated over the full temperature range of -40°C to +85°C, and over the supply range of 3V to 3.6V.
 Test data represents operation at the maximum data rate of 125 Mbps using a PRBS7 test pattern (8B/10B encoding) unless otherwise stated.
- 3. Optical power was coupled from a minimum 0.5 m length of 1 mm diameter core and 0.5 NA step index plastic optic fiber.

Parameter	Symbol	Minimum	Typical	Maximum	Unit
DC Supply Voltage	Vcc	3.0	3.3	3.6	V
Operating Current Consumption	Icc	35	43	50	mA
Output Impedance Between D and <u>D</u>	R_{Diff}		100		Ohm
Offset Common Mode Voltage	V_{ocm}		1.41		V
Output Differential Voltage Swing		800	1150	1400	mV
Receivable Optical Power Sensitivity			-26	-24	dBm
Maximum Allowed Optical Power				0	dBm
Rise Time (10%-90%)			1.6	3.4	ns
Fall Time (90%-10%)			1.6	3.4	ns
Signal Detect Assert/De-Assert time	T_{SD}	0.1	0.3	0.6	us
Signal Detect Optical Assert Level	P _{SD-AS}	-32	-27	-24	dBm
Signal Detect Optical De-Assert Level	P _{SD-DAS}	-32	-28	-25	dBm
Signal Detect Voltage High	V_{SDH}	2.4	3.0	3.6	V
Signal Detect Voltage Low	V_{SDL}	0.0	0.05	0.1	V
Open Eye Width	EW	5.7	7.4	7.9	ns

FB1M2KPR Revision A
Firecomms assumes no responsibility for inaccuracies or omissions in the information contained in this document.
Specifications are subject to change without notice. No patent rights are granted to any of the circuits described herein.

Tel: +44 1245 491 499

SPECIFICATIONS (continued)

	Table 5 TRANSCEIVER PIN DESCRIPTION				
Pin	Name	Symbol			
	TRANSMITTER				
1	EMI Shield-GND	GND			
2	Signal Input TX-	TX-			
3	Signal Input TX+	TX+			
4	Ground Pin ^[1]	GND			
5	DC Power Input Pin 3.3V	Vcc			
6	Ground Pin ^[1]	GND			
RECEIVER					
7	DC Power Input Pin 3.3V	Vcc			
8	Ground Pin	GND			
9	Signal Detect Output	SD			
10	Data Output (Negative)	RD-			
11	Data Output (Positive)	RD+			
12	EMI Shield-GND	GND			

^{1.} NB: both TX ground pins must be connected to the ground plane on the PCB. These pins are <u>not</u> connected internally.

FIGURE 10 OptoLock shown with dust cap, as open for fiber, and with fiber inserted

FB1M2KPR Revision A
Firecomms assumes no responsibility for inaccuracies or omissions in the information contained in this document.
Specifications are subject to change without notice. No patent rights are granted to any of the circuits described herein.

Laser Diodes

FB1M2KPR DATA SHEET 7

APPLICATION CIRCUIT

Figure 11 is the general interface circuit. Each Ethernet PHY manufacturer recommends a termination configuration for its own design. Examples of the most commonly used PHYs are given in the Firecomms Ethernet Application Note.

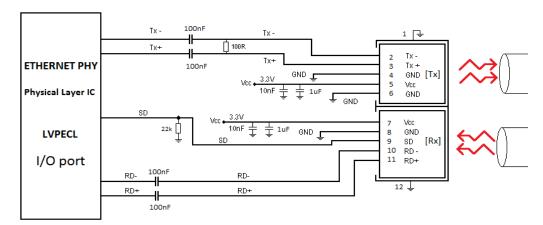
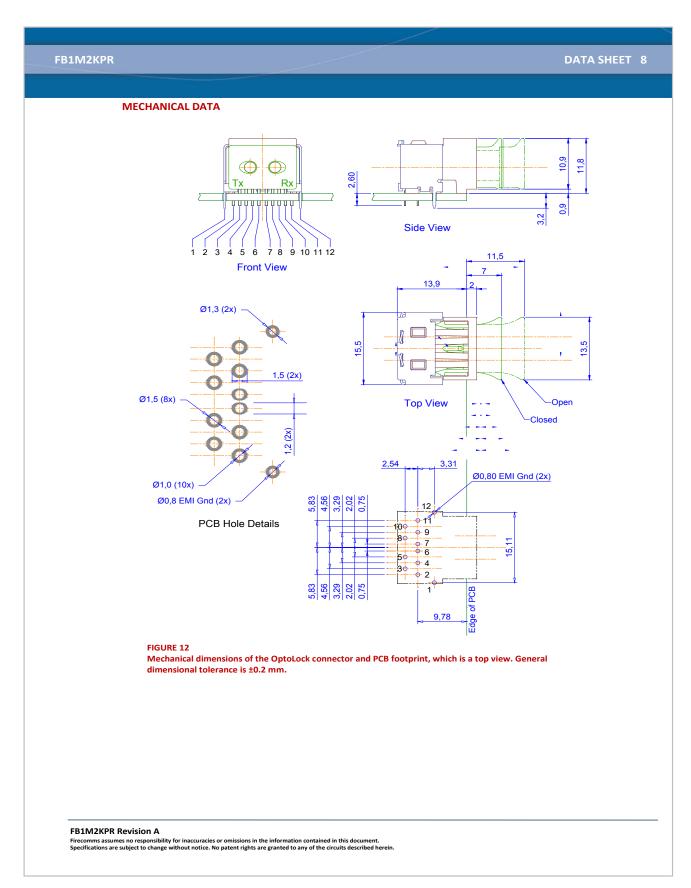


FIGURE 11
Interface circuit schematic to AC couple to an Ethernet PHY

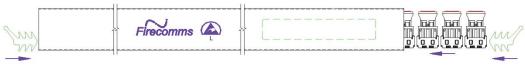
Notes:


- The transmitter (TX) and receiver (RX) are electrically shielded from each other to prevent crosstalk.
 To be effective this shield must be grounded.
- To be effective this shield must be grounded 2. Both GND pins of the TX FOT must be connected to GND (they are not connected internally).
- Power line capacitors should be located as close as possible to the FOT's DC power PINs.
- 4. The data lines are impedance-matched differential pairs. The PCB layout for these tracks must comply to IEEE standards for high-speed data and impedance matching.

FB1M2KPR Revision A

Firecomms assumes no responsibility for inaccuracies or omissions in the information contained in this document. Specifications are subject to change without notice. No patent rights are granted to any of the circuits described herein.

Tel: +44 1245 491 499


Tel: +44 1245 491 499

PACKING INFORMATION

Components are packed in PVC anti-static tubes in moisture barrier bags. Bags should be opened only in staticcontrolled locations, and standard procedures should be followed for handling moisture sensitive components.

Table 6 PACKING INFORMATION				
Components per Tube		25		
	Tube Length	440 mm		
	Tube Height	20 mm		
	Tube Depth	31 mm		
Tubes per Bag		10		
Bags per Inner Carton		1		
	Inner Carton Length	590 mm		
	Inner Carton Height	85 mm		
	Inner Carton Depth	145 mm		
Weight per Inner Carton, Complete		1.8 Kg		
Components per Inner Carton		250		
Inner Cartons per Outer Carton		4		
	Outer Carton Length	600-640 mm		
	Outer Carton Height	300 mm		
	Outer Carton Depth	200-285 mm		
Weight per Outer Carton, Complete		8.6 Kg		
Components per Outer Carton		1,000		

Packing tube for the Firecomms transceiver

ORDERING INFORMATION

Table 7 ORDERING INFORMATION			
Part Number	Name	Description	
FB1M2KPR	Industrial Ethernet OptoLock Transceiver, 2.2 mm POF, Black	650 nm RCLED-Based Transceiver, Color Black, with Black Termination for Bare POF Cable 2.2 mm Diameter	

Tel: +44 1245 491 499

Fax: +44 1245 491 801

Copyright (c) 2012 Firecomms Ltd. OptoLock is a registered trademark of Firecomms Ltd.

FB1M2KPR Revision A
Firecomms assumes no responsibility for inaccuracies or omissions in the information contained in this document.
Specifications are subject to change without notice. No patent rights are granted to any of the circuits described herein.