Click here to change sales region

Application Notes

19.02.2024

Laser Power and Energy Measurements with Pyroelectric IR Detectors

Pyroelectric detectors have been used to measure the power and energy in CW and pulsed lasers now for many years. This note will explain the technique of applying these devices for these applications and the subtleties which make these devices ideal for many power and energy uses.

Laser Power and Energy Measurements
with Pyroelectric IR Detectors

Beyond Borders

Pyroelectric detectors are unique from other thermal detectors in that they have no DC or CW response. In order to produce an output they must experience an optically (IR) induced change in their temperature. This is classically accomplished by pulsing or chopping the input energy. The minimum chopping or pulse frequency is determined by the device’s thermal time constant which is analogous to the heat leak rate. This is typically on the order of 10 to 300 msec and can be specified. If the detector is configured for very high power applications the heat generated by the absorbed power must be dissipated and thus in this case the time constant is greatly reduced by heatsinking the element.

These IR detectors are actually charge generators where the charge produced is a function of their temperature change. However the charge is quickly dissipated due to the element’s thermalization (back to ambient) caused by the heat leaking away (time constant). The charge produced by the change in temperature as a function of time (Coul/sec) gives rise to a current which is a function of the power absorbed by the element. Thus the device produces a current response by which it is specified (A/W). For this reason these are usually modeled electrically as current sources in parallel with their own capacitances.

As capacitors they are high impedance devices and thus act as integrators of the voltage produced by their thermally induced current. Thus the voltage produced as a function of time is                    .
 

VW=AWZeffPd

In order to resolve a pulse and measure its power (Watts) the detector’s electrical time constant must be reduced which is accomplished by the addition of a shunt resistance (Rl) whose value is a function of the pulse frequency.

In general the electrical time constant should be at least 1/10 of the pulse width.  

The output voltage will be:

 

Where Zeff is the total impedance of the detector and Pd is the input optical power.  

 

Note that the input impedance of the measuring instrument and the capacitance of any cabling need to be
considered part of the Zeff. Often a transimpedance amplifier is used to better couple the detector to the
measuring instrument.
In application the impedances required to resolve the pulse are so small that the voltage produced is very small and may approach the limit of the signal to noise of the measuring equipment. In this case the total energy in the pulse is measured in Volts/Joule.
 

VJ=AW(Cd+Cl)

BILD

 

The output pulse will be look as below: 

 

SKIZZE

 

The amplitude of the pulse is the total energy in the detected heat pulse. The average power (Watts) in the pulse can be calculated knowing the V/J and the pulse width. One of the drawbacks to using these or any other detector for measuring laser pulses is the damage induced by these short high energy pulses where the average power is low but the peak power is enough to damage the element. For this case very low cost devices based on other much cheaper materials are used and are considered ablative as the replacement cost is very low.
 

 

 

Jim Dell
If You have any Questions
Click here

IR Detectors

MANUFACTURED BY LASER COMPONENTS

Infrared Components Infrared Components
55+ Series: IR Components for 5Hz / 5µm

Complete with selected filter and other accessories.

A perfect match: The ideal emissivity of Infrasolid emitters complement the high dynamic range and low noise of our custom-made pyrodetectors.
IA35 Series InAs 900 - 3500 nm IA35 Series InAs 900 - 3500 nm
InAs 900 - 3500 nm

The IA35 series photodiodes based on heterostructures were specially designed for operation at room temperature.

IAG080S5 IAG080S5
InGaAs APDs
1100 - 1700 nm

Best efficiency thanks to excellent signal-to-noise ratio.

The IAG series avalanche photodiodes feature a particularly good signal-to-noise ratio and support an amplification of more than 30. The inexpensive IAL series is made for consumer products.
New
IG22X250T7 IG22X250T7
InGaAs Photodiodes 500 - 2600 nm

Infrared (IR) photodiodes with an emphasis on quantum efficiency

LASER COMPONENTS develops and manufactures photodiodes in the spectral range of up to 2600 nm in the Near-Infrared (NIR).
PbS lead selenide infrared detector PB25S30309S PbS lead selenide infrared detector PB25S30309S
PbS Detectors

PbS Detectors detect infrared radiation in the wavelength range between 1 µm and 3.3 µm.

PbS detectors offer high sensitivity at a low price. They are the perfect solution for large-area IR detectors.
PbSe lead selenide infrared detector PB55S1010T2S8L PbSe lead selenide infrared detector PB55S1010T2S8L
PbSe Detectors

Polycrystalline lead selenide (PbSe) is a standard semiconductor detector with a sensitivity of between 1 µm and 5.2 µm.

H1 Receiver H1 Receiver
APD Receivers

APDs with matched, integrated pre-amplifier in compact hermetic packages.

All receivers are available with Si or InGaAs APDs.
A-CUBE - Plug & Play APD Modules A-CUBE - Plug & Play APD Modules
APD-Modules

Fast and reliable detection of light. In APD modules the driver for operating the avalanche photodiodes is already included.

New
ALUT3151X1300-k2 ALUT3151X1300-k2
Advanced LTO Infrared Detectors

Advanced single channel voltage mode detectors for FTIR instruments.

Excellent linearity and fast response to IR flux change.
ALUT3151X1300-k2 ALUT3151X1300-k2
Advanced LTO Infrared Detectors

Advanced single channel voltage mode detectors for FTIR instruments.

Excellent linearity and fast response to IR flux change.
SAT3000E1 Avalanche Photodiodes at 1064 nm SAT3000E1 Avalanche Photodiodes at 1064 nm
Avalanche Photodiodes at 1064 nm

Nd:YAG Enhanced APDs

COUNT NIR COUNT NIR
COUNT® NIR

Single photon counting modules with a detection efficiency >50% at 810 nm

Downloads

Beyond Borders

LASER COMPONENTS USA - Your competent partner for optical and optoelectronic components in the United States.

Welcome to LASER COMPONENTS USA, Inc., your expert for photonics components. Each product in our wide range of detectors, laser diodes, laser modules, optics, and more is worth every Dollar ($/USD). Our customized solutions cover all conceivable areas of application: from sensor technology to medical technology. You can reach us here:

116 South River Road
Building C
Bedford, NH 03110
USA

Phone: +1 603 821 7040
Email: info(at)laser-components.com

Team of experts
You have questions or need our support?
Please call us.
Employee of LASER COMPONENTS US Jim Dell
Sales Account Manager / IR Components
Jim Dell
LASER COMPONENTS USA Inc.
03110 Bedford, NH
Contact Form
You would like to send us something? You can reach us by phone and by e-mail.

Laser Components

116 South River Road
Building C
Bedford, NH 03110
USA

Phone: +1 603 821 7040

We need your consent

We need your consent to load the Hubspot service! Please review the details and accept the service.

You will be redirected
to the Fiber Technology Website ...