Click here to change sales region

Innovations

Improvement of the LIDT of high-reflection mirrors

Dr. Sina Malobabic

Director of R&D
LASER COMPONENTS Germany GmbH

Title of Presentation:
Improvement of the LIDT of high-reflection mirrors with inserted quantized nanolaminates manufactured by ion beam sputtering 

28 January 2025 • 9:05 AM - 9:25 AM PST 
Oral Presentation
Moscone West, Room 2014 (Level 2)

Abstract - Quantized nanolaminates

Quantized nanolaminates (QNLs) are sequences of alternating layer stacks of high and low refractive index material in the nanometer regime (quantum well layer and barrier layer) resulting in a metamaterial. It has been shown that QNLs are able to overcome the natural interdependency between refraction index and optical bandgap in the deposition material, allowing both properties to be tuned individually. Beyond that, QNLs are said to improve the laser-induced damage threshold (LIDT), while tuning the optical bandgap to higher values. In this study, we used ion beam sputtering (IBS) and embedded QNLs into a Ta2O5 - SiO2 high-reflectance (HR) mirror at 532 nm and 45° angle of incidence. The thickness of the quantum well layers varied from 0,5 nm, 1 nm, 2 nm, 4 nm, 8 nm. LIDT was determined by S-on-1 testing. We also performed an evaluation of the electric field intensity throughout the whole extent of the mirrors to better understand the impact of QNL-dimensions on the endurance of HR-mirrors. 

Laser Optics

manufactured by LASER COMPONENTS

Aspherical lens Aspherical lens
Aspherical Lenses

Aspherical lenses correct aberrations, which in monochromatic light include image sharpness errors and distortion.

A typical application of these lenses is the focusing of a collimated beam onto an optical fiber.
Polarization Optics Polarization Optics
Brewster Plates

Brewster plates are used to separate s- and p-polarized light.

Brewster plates have a rectangular shape and are inserted at a specific angle of incidence to the laser beam. Light that is polarized parallel to the plane of incidence/reflection is completely transmitted at Brewster’s angle, whereas about 50 % of s-polarized light is transmitted.
Spherical Mirrors Spherical Mirrors
Cavity Mirror / End Mirror

Cavity end mirrors are used to generate the laser beam in the resonator.

Resonator end mirrors, also known as cavity mirrors, are designed to have high reflectivity at the desired laser wavelength in order to maximize the efficiency of the laser.
Cylindrical lens Cylindrical lens
Cylindrical Lenses

ROUND AND RECTANGULAR CYCLINDER LENSES ARE USED TO CREATE LINES / BEAM EXPANSIONS IN ONE DIRECTION.

We offer plano-concave and plano-convex cyclindrical lenses in rectangular, square, and round form.
Diagnostic Beam Splitter Diagnostic Beam Splitter
Diagnostic Beam Splitters

DIAGNOSTIC BEAM SPLITTERS FOR PROCESS MONITORING

Dichroic mirrors separate or combine two or more beams of different wavelengths in the desired ratio and enable process monitoring on the operating level in several wavelength ranges, as well as beam diagnostics. Their complex design enables multiple transmission and reflection ranges.
Dichroic Mirrors Dichroic Mirrors
Dichroic Mirrors

combine or separate two or more beams with different wavelengths.

Customized dichroic mirrors that are suitable for your individual application are manufactured upon request. 
Gaussian Mirrors Gaussian Mirrors
Gaussian Mirrors

The degree of reflection slopes from the center of the optic in a Gaussian distribution. 

Gaussion mirrors are used in unstable resonators - mostly as meniscus lenses with an integrated wedge to avoid back reflections despite of antireflection coatings.
Optical Flat Mirrors High Power Optical Flat Mirrors High Power
High-power Laser Mirrors

Optimized for high-power lasers with intense pulse energies or high average powers

Mirrors for high-power lasers are high-precision optical components that direct or focus the laser beam. Thanks to a dielectric coating, the mirrors reflect the laser beam efficiently and withstand the high thermal load caused by the laser energy.
Optical Windows Optical Windows
Laser Debris Shield

Protective windows are used during laser material processing to protect against material splashes.

Protective windows are the last optics to be used in front of the work area. They protect high-quality laser optics from material splashes during cutting, welding, drilling, structuring, marking and additive manufacturing. Protective windows are available in a variety of shapes and qualities.
Laser Line Beam Splitter Laser Line Beam Splitter
Laser Line Beam Splitter

FOR SPLITTING INTO ONE OR MORE DEFINED PARTIAL BEAMS.

When working with lasers, it is often necessary to split a laser beam into two or more defined partial beams. There are a variety of beam splitters for these applications, with different advantages and disadvantages. Dielectrically coated beam splitters have a high laser damage threshold. 
Laser Windows Laser Windows
Laser Windows

Transmissive Plano-Parallel Plates WITH MINIMAL DISTORTION, SCATTERING OR ABSORPTION

Optical windows for laser applications are flat, transparent substrates made of materials with excellent optical properties. They are usually optimized to provide maximum transmission in a specific wavelength range providing low reflection and absorption at the same time.
Polychromatic Beam Splitters Polychromatic Beam Splitters
Multiple-Wavelength Beam Splitters

FOR THE SIMULTANEOUS PROCESSING OF LIGHT OF DIFFERENT WAVELENGTHS

Multi-wavelength beam splitters can be optimised for different ratios of reflected and transmitted light.  
Harvey Washbrook
If you are looking for Laser Optics we are Happy to Support you
Click here

LASER COMPONENTS Nordic - Your competent partner for optical and optoelectronic components in Sweden, Norway, Finland, Denmark, and Iceland.

Welcome to LASER COMPONENTS Nordic AB, your expert for photonics components. Each product in our wide range of detectors, laser diodes, laser modules, optics, fiber optics, and more is worth every Crown (SEK). Our customized solutions cover all conceivable areas of application: from sensor technology to medical technology. You can reach us here:

Box 14001 / Skårs led 3
SE-400 20 Göteborg
Sweden

Phone: +46 (0)31 703 7173
Email: info(at)lasercomponents.se

Team of experts
You have questions or need our support?
Please call us.
Harvey Washbrook
Sales Account Manager
Harvey Washbrook
Laser Components Nordic AB
41263 Göteborg - Sweden
Contact Form
You would like to send us something? You can reach us by phone and by e-mail.

Laser Components

Box 14001 / Skårs led 3
SE-400 20 Göteborg
Sweden

Phone: +46 (0)31 703 7173

You will be redirected
to the Fiber Technology Website ...