Click to change the region
Flying drone and green wheat field Flying drone and green wheat field

Building LidAR Systems

Accurate Measurements with Optoelectonics Technologies

As a highly accurate measurement tool, LiDAR or Light Detection and Ranging uses lasers, such as pulsed laser diodes (PLDs) with photodetectors, typically avalanche photodiodes (APDs) to calculate distance.

Building LiDAR Systems

Choose the Right Components to Build a LiDAR System

Where to use LiDAR systems.
LiDAR systems have a wide range of use cases from measuring the distance of an object, to complex 3D models to create digital twins, LiDAR is a remote sensing technology that can assist in detecting targets.

Long-range and short-range LiDAR.
Regardless of the specific use case, both long-range and short-range LiDAR systems are available in the market. Each of the systems need similar components but with (very) different specifications.

The perfect match.
LASER COMPONENTS takes scientific and industrial experience to help system integrators find the best match of emitters and detectors for their needs, even with custom products for unique requirements. 

Winfried Reeb
what are you looking for?
Click here

State-of-the-art Technology

Reliable TIME-OF-FLIGHT MEASUREMENTS

Modern City Night View Modern City Night View

LiDAR measurements emit several thousand laser pulses per second. Each pulse lasts only a few nanoseconds.

The distance to the obstacle can be determined by the difference in transit time between the outgoing signal and the incoming reflection, often referred as the time-of-flight (ToF) methodology.

Since PLDs emit beams at an interval of a few nanoseconds and because nothing is faster than light, LiDAR provides reliable information in the shortest possible amount of time.

Areas of Use

What can be measured?

LASER COMPONENTS’ portfolio offers a variety of high-end customizable PLD and APD options. With the right components, LiDAR can capture accurate measurements in a wide range of environments to generate 3D point clouds that represent vast terrains or floor plans for indoor inspection. For autonomous driving, an object might be moving, requiring quick, responsive, and reliable LiDAR systems to ensure the safety of the driver and those on the road. With LiDAR, even gases like methane can be monitored though differential-LiDAR methods to keep the environmental impacts controlled. 

Some popular areas of use for LiDAR systems include:

  • Architecture & Building Design
  • Gas Mapping
  • Range finding
  • Telemetry
  • Naval automated position control
  • Presence detection 
  • Atmospheric LiDAR 
  • Forest agriculture 
  • Tomography medical
  • Topography
  • Artificial Reality (AR) / Virtual Reality (VR)
  • Automotive
  • Ophthalmology
  • Defense & Aerospace
  • Machine Vision
  • Space

Piercing through the Jungle

Optoelectronic LiDAR measuring uncovers the secrets of ancient civilizations.

When you go on a journey, you hope for an extraordinary experience. The allure of distant countries lies in their exotic landscapes, unfamiliar customs, and remains of long-forgotten advanced civilizations. Historical sites such as Angkor Wat, Machu Picchu, and Tikal (see photo) have proven to be real tourist magnets – and not all secrets of the past have been revealed yet.

Today, laser technology provides archaeologists with information of which they were previously unaware. Just recently, new discoveries about the Maya have caused a sensation.

Create state-of-the-art LiDAR systems with reliable PLDs and APDs 
SAH1L16-012LCC44
Customized components are important when you design an individual system

Science Fiction was YesterdaY

Drones in Fire Department Operations
Drones are unmanned aerial vehicles (UAVs) that can be used privately or commercially. UAV systems are already used today in rescue missions. In the most straightforward fire department operations, they are used to localize the source of the fire; this is especially useful in forest fires when initiating targeted fire-fighting operations. The U.S.A. has already gained positive results in this respect.

Professional drones, fly autonomously; therefore, high demands are placed on their safety systems. 

Types of LiDAR

with specific advantages

+ Long-range LiDAR. For many well-known applications, long-range LiDAR is what comes to mind. In outdoor environments, vehicles will often require long-range LiDAR for fast-moving targets, such as in automotive systems. Additionally, aerial vehicles, used in applications like altimetry, remote sensing, and precision agriculture using longer wavelengths capture information on crops below with less interference from clouds and other atmospheric conditions. 

+ Short-range LiDAR. However, in industrial environments, short-range LiDAR can be a better solution when it comes to minimizing power requirements. A factory setting can benefit from the lower power, size, and cost requirements of a short-range system because it can be scaled easier depending on the needs of the application such as automated doors or safety curtains. Where an automotive application might require a 250-meter distance, automated robotics in close quarters might only need to detect other objects within one meter.

Scanning Lidar

By affixing a laser and a receiver to the base of the LiDAR system, a spinning head containing a motor and a mirror is used to emit and detect the laser light. The servo motor adjusts the mirror to capture a vertical field of view (FoV).  

A LiDAR system will horizontally rotate 360° to capture a 3D-point cloud. A high-speed PLD sends out laser pulses which are reflected by the surrounding environment, that finally reach the photodetector on a mechanically rotating platform.

By using this type of LiDAR a solution can reliably use one LiDAR to cover an area instead of using multiple units. The lasers used in these systems use IR wavelengths, commonly at 905 nm for high-volume, commercial, industrial and customer application or 1550 nm for higher-resolution, longer distance measurements in outdoor applications.

Solid-state Lidar

Instead of using a mechanical solution, a solid-state LiDAR uses semiconductor solutions to scan or steer light through a scene instead of conventional motors. The pulsed laser is scanned across a FoV by using Micro-Electromechanical System (MEMS) or an Optical Phased Array (OPA).

With MEMS a mirror is used to scan an environment while an OPA is designed to be a fully solid-state solution with no moving parts by electronically adjusting the direction of the laser beam.

Flash LiDAR

Unique among the LiDAR solutions, flash LiDAR illuminates the entire FoV at once and a photodetector array captures the return of the entire FoV at once, thus capturing a point cloud, similar to how a camera system captures an entire scene with one scan.

Flash LiDAR is mechanically / optically simple and potentially cheaper as there is no need for a beam steering mechanism. A powerful emitter and very sensitive photodetector array are needed for this solution.

Downloads

download useful documents

Products

to build precise LiDAR Systems

LiDAR systems should be dependable, small, and cost-effective at the same time. For systems that use aerial vehicles, such as drones it is important to consider Size, Weight, and Power consumption (SWaP) to ensure long-term operation. For manufacturers of laser-based measuring devices and optoelectronic components, this can be a great challenge. 

LASER COMPONENTS manufactures all components for powerful and future-oriented LiDAR solutions in its ISO-certified production facilities. Customize the components with various options to best suit an application, such as Fast-Axis Correction (FAC) with micro-optics to ensure correct alignment of laser beams. PLDs with ultra-short pulses provide better resolution for distance measurement, in combination with highly sensitive APDs, even the smallest signals can be detected

What Challenge are you facing?

Let us know!
Dr. Mike Hodges
LASER COMPONENTS Germany GmbH

Product Selection

Pulsed Laser Diodes at 905 nm

Single emitters, stacks and multi-junction pulsed laser diodes up to 650 W

Quick selection! Click here to find the laser diode you need and check its data sheet.  Laser Diode Selector
FAC Package FAC Package
Pulsed Laser Diodes at 1550 nm

Pulsed laser diodes at 1550 nm up to 40 W

Quick selection! Click here to find the laser diode you need and check its data sheet.  Laser Diode Selector
SAE230NM8 SAE230NM8
Si Avalanche Photodiodes

SAPDs are suitable for the spectral range from 260 nm to 1100 nm.

Silicon avalanche photodiodes are used in the wavelength range from the UV to the near infrared. LASER COMPONENTS manufactures different series: highest quality for demanding systems, over customized version to components made for consumer products. 
IAG080S5 IAG080S5
InGaAs APDs
1100 - 1700 nm

Best efficiency thanks to excellent signal-to-noise ratio.

The IAG series avalanche photodiodes feature a particularly good signal-to-noise ratio and support an amplification of more than 30. The inexpensive IAL series is made for consumer products.
Team of experts
You have questions or need our support?
Please call us.
Winfried Reeb
Head of Business Unit Active Components
Winfried Reeb
LASER COMPONENTS Germany GmbH
82140 Olching
Pierre Chazan
Senior Business Development Manager
Pierre Chazan
LASER COMPONENTS S.A.S.
92190 Meudon
Svante Karlsson
Sales Account Manager
Svante Karlsson
Laser Components Nordic AB
41263 Göteborg - Sweden
Edward Williams
Technical Sales Engineer
Edward Williams
LASER COMPONENTS (UK) Ltd.
CM2 7PR Chelmsford Essex
Dr. Mike Hodges
Sales Account Manager / Active Components
Dr. Mike Hodges
LASER COMPONENTS Germany GmbH
82140 Olching
Harvey Washbrook
Sales Account Manager
Harvey Washbrook
Laser Components Nordic AB
41263 Göteborg - Sweden
Contact Form
You would like to send us something? You can reach us by phone and by e-mail.

Laser Components

Werner-von-Siemens-Str. 15
82140 Olching
Deutschland

You will be redirected
to the Fiber Technology Website ...